Ingresa un problema...
Álgebra lineal Ejemplos
Paso 1
Reescribe la ecuación como .
Paso 2
Resta de ambos lados de la ecuación.
Paso 3
Usa la fórmula cuadrática para obtener las soluciones.
Paso 4
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 5
Paso 5.1
Simplifica el numerador.
Paso 5.1.1
Factoriza de .
Paso 5.1.1.1
Factoriza de .
Paso 5.1.1.2
Factoriza de .
Paso 5.1.1.3
Factoriza de .
Paso 5.1.2
Factoriza de .
Paso 5.1.2.1
Reordena la expresión.
Paso 5.1.2.1.1
Mueve .
Paso 5.1.2.1.2
Reordena y .
Paso 5.1.2.2
Reescribe como .
Paso 5.1.2.3
Factoriza de .
Paso 5.1.2.4
Reescribe como .
Paso 5.1.3
Combina exponentes.
Paso 5.1.3.1
Factoriza el negativo.
Paso 5.1.3.2
Multiplica por .
Paso 5.1.4
Reescribe como .
Paso 5.1.4.1
Reescribe como .
Paso 5.1.4.2
Reescribe como .
Paso 5.1.5
Retira los términos de abajo del radical.
Paso 5.1.6
Eleva a la potencia de .
Paso 5.2
Multiplica por .
Paso 5.3
Simplifica .
Paso 5.4
Mueve el negativo del denominador de .
Paso 5.5
Reescribe como .
Paso 6
Paso 6.1
Simplifica el numerador.
Paso 6.1.1
Factoriza de .
Paso 6.1.1.1
Factoriza de .
Paso 6.1.1.2
Factoriza de .
Paso 6.1.1.3
Factoriza de .
Paso 6.1.2
Factoriza de .
Paso 6.1.2.1
Reordena la expresión.
Paso 6.1.2.1.1
Mueve .
Paso 6.1.2.1.2
Reordena y .
Paso 6.1.2.2
Reescribe como .
Paso 6.1.2.3
Factoriza de .
Paso 6.1.2.4
Reescribe como .
Paso 6.1.3
Combina exponentes.
Paso 6.1.3.1
Factoriza el negativo.
Paso 6.1.3.2
Multiplica por .
Paso 6.1.4
Reescribe como .
Paso 6.1.4.1
Reescribe como .
Paso 6.1.4.2
Reescribe como .
Paso 6.1.5
Retira los términos de abajo del radical.
Paso 6.1.6
Eleva a la potencia de .
Paso 6.2
Multiplica por .
Paso 6.3
Simplifica .
Paso 6.4
Mueve el negativo del denominador de .
Paso 6.5
Reescribe como .
Paso 6.6
Cambia a .
Paso 6.7
Aplica la propiedad distributiva.
Paso 6.8
Multiplica por .
Paso 7
Paso 7.1
Simplifica el numerador.
Paso 7.1.1
Factoriza de .
Paso 7.1.1.1
Factoriza de .
Paso 7.1.1.2
Factoriza de .
Paso 7.1.1.3
Factoriza de .
Paso 7.1.2
Factoriza de .
Paso 7.1.2.1
Reordena la expresión.
Paso 7.1.2.1.1
Mueve .
Paso 7.1.2.1.2
Reordena y .
Paso 7.1.2.2
Reescribe como .
Paso 7.1.2.3
Factoriza de .
Paso 7.1.2.4
Reescribe como .
Paso 7.1.3
Combina exponentes.
Paso 7.1.3.1
Factoriza el negativo.
Paso 7.1.3.2
Multiplica por .
Paso 7.1.4
Reescribe como .
Paso 7.1.4.1
Reescribe como .
Paso 7.1.4.2
Reescribe como .
Paso 7.1.5
Retira los términos de abajo del radical.
Paso 7.1.6
Eleva a la potencia de .
Paso 7.2
Multiplica por .
Paso 7.3
Simplifica .
Paso 7.4
Mueve el negativo del denominador de .
Paso 7.5
Reescribe como .
Paso 7.6
Cambia a .
Paso 7.7
Aplica la propiedad distributiva.
Paso 7.8
Multiplica por .
Paso 7.9
Multiplica .
Paso 7.9.1
Multiplica por .
Paso 7.9.2
Multiplica por .
Paso 8
La respuesta final es la combinación de ambas soluciones.
Paso 9
Establece el radicando en mayor o igual que para obtener el lugar donde está definida la expresión.
Paso 10
Paso 10.1
Convierte la desigualdad en una ecuación.
Paso 10.2
Usa la fórmula cuadrática para obtener las soluciones.
Paso 10.3
Sustituye los valores , y en la fórmula cuadrática y resuelve .
Paso 10.4
Simplifica.
Paso 10.4.1
Simplifica el numerador.
Paso 10.4.1.1
Eleva a la potencia de .
Paso 10.4.1.2
Multiplica por .
Paso 10.4.1.3
Aplica la propiedad distributiva.
Paso 10.4.1.4
Multiplica por .
Paso 10.4.1.5
Multiplica por .
Paso 10.4.1.6
Suma y .
Paso 10.4.1.7
Factoriza de .
Paso 10.4.1.7.1
Factoriza de .
Paso 10.4.1.7.2
Factoriza de .
Paso 10.4.1.7.3
Factoriza de .
Paso 10.4.1.8
Reescribe como .
Paso 10.4.1.9
Retira los términos de abajo del radical.
Paso 10.4.2
Multiplica por .
Paso 10.4.3
Simplifica .
Paso 10.5
Simplifica la expresión para obtener el valor de la parte de .
Paso 10.5.1
Simplifica el numerador.
Paso 10.5.1.1
Eleva a la potencia de .
Paso 10.5.1.2
Multiplica por .
Paso 10.5.1.3
Aplica la propiedad distributiva.
Paso 10.5.1.4
Multiplica por .
Paso 10.5.1.5
Multiplica por .
Paso 10.5.1.6
Suma y .
Paso 10.5.1.7
Factoriza de .
Paso 10.5.1.7.1
Factoriza de .
Paso 10.5.1.7.2
Factoriza de .
Paso 10.5.1.7.3
Factoriza de .
Paso 10.5.1.8
Reescribe como .
Paso 10.5.1.9
Retira los términos de abajo del radical.
Paso 10.5.2
Multiplica por .
Paso 10.5.3
Simplifica .
Paso 10.5.4
Cambia a .
Paso 10.6
Simplifica la expresión para obtener el valor de la parte de .
Paso 10.6.1
Simplifica el numerador.
Paso 10.6.1.1
Eleva a la potencia de .
Paso 10.6.1.2
Multiplica por .
Paso 10.6.1.3
Aplica la propiedad distributiva.
Paso 10.6.1.4
Multiplica por .
Paso 10.6.1.5
Multiplica por .
Paso 10.6.1.6
Suma y .
Paso 10.6.1.7
Factoriza de .
Paso 10.6.1.7.1
Factoriza de .
Paso 10.6.1.7.2
Factoriza de .
Paso 10.6.1.7.3
Factoriza de .
Paso 10.6.1.8
Reescribe como .
Paso 10.6.1.9
Retira los términos de abajo del radical.
Paso 10.6.2
Multiplica por .
Paso 10.6.3
Simplifica .
Paso 10.6.4
Cambia a .
Paso 10.7
Consolida las soluciones.
Paso 11
El dominio son todos números reales.
Notación de intervalo:
Notación del constructor de conjuntos: